Designing Area and Performance Constrained SIMD/VLIW Image Processing Architectures
نویسندگان
چکیده
Image processing is widely used in many applications, including medical imaging, industrial manufacturing and security systems. In these applications, the size of the image is often very large, the processing time should be very small and the real-time constraints should be met. Therefore, during the last decades, there has been an increasing demand to exploit parallelism in applications. It is possible to explore parallelism along three axes: data-level parallelism (DLP), instruction-level parallelism (ILP) and task-level parallelism (TLP). This paper explores the limitations and bottlenecks of increasing support for parallelism along the DLP and ILP axes in isolation and in combination. To scrutinize the effect of DLP and ILP in our architecture (template), an area model based on the number of ALUs (ILP) and the number of processing elements (DLP) in the template is defined, as well as a performance model. Based on these models and the template, a set of kernels of image processing applications has been studied to find Pareto optimal architectures in terms of area and number of cycles via multi-objective optimization.
منابع مشابه
Parallelism Support in SIMD/VLIW Image Processing Architectures
Image processing is widely used in many applications, including medical imaging, industrial manufacturing and security systems. In these applications, the size of the image is often very large, the processing time should be very small and the real-time constraints should be met. Therefore, during the last decades, there has been an increasing demand to exploit parallelism in applications. It is...
متن کاملEvaluating Signal Processing and Multimedia Applications on SIMD, VLIW and Superscalar Architectures
This paper aims to provide a quantitative understanding of the performance of DSP and multimedia applications on very long instruction word (VLIW), single instruction multiple data (SIMD), and superscalar processors. We evaluate the performance of the VLIW paradigm using Texas Instruments Inc.’s TMS320C62xx processor and the SIMD paradigm using Intel’s Pentium II processor (with MMX) on a set o...
متن کاملInitial Evaluation of Multimedia Extensions on VLIW Architectures
Media processing has motivated strong changes in the focus and design of processors. The inclusion of μSIMD multimedia extensions such as MMX is a cost effective option to improve the performance of those regions of the program with large amounts of DLP. This paper provides an initial evaluation of μSIMD and vector-SIMD enhanced VLIW architectures. We show that these two architectures execute r...
متن کاملA Comparison Between Processor Architectures for Multimedia Applications
The efficient processing of MultiMedia Applications (MMAs) is currently one of the main bottlenecks in the media processing field. Many architectures have been proposed for processing MMAs such as VLIW, superscalar (general-purpose processor enhanced with a multimedia extension such as MMX), vector architectures, SIMD architectures, and reconfigurable computing devices. The question then arises...
متن کاملEvaluating VLIW and SIMD Architectures for DSP and Multimedia Applications
Digital signal processing (DSP) and multimedia applications are expected to be the dominant workloads on future computer systems. In this paper, we evaluate the performance of a very long instruction word (VLIW) processor using Texas Instruments Inc.’s TMS320C6x and a single-instruction multiple-data (SIMD) processor using Intel’s Pentium II processor (with MMX) on a set of benchmarks. Our benc...
متن کامل